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Abstract

Mobile devices have become an essential part of our daily life while IoT devices are being
rapidly deployed in our home, factories, and infrastructures. These omnipresent devices bring in
great convenience along with growing security and privacy concerns. For example, the attacks
on IoT devices are becoming increasingly complex and destructive. New attack surfaces are
also being opened up on mobile devices along with the wide deployment of machine learning
(ML) technology, e.g., the privacy of on-device machine learning models.

In this thesis, I present two novel systems and one large-scale study to understand and
combat the newly emerging attacks on both IoT devices and mobile devices. The security of
these two systems is built on hardware-backed trusted computing primitives to provide strong
security guarantee. First, I present OAT, an attestation system that captures the integrity of
both control flow and critical data involved in an operation execution to detect advanced attacks
on IoT devices. OAT advances the state-of-the-art attestation on IoT devices by providing
strong control-flow verification and light-weight critical data integrity check. Second, I present
the first large-scale study of insufficient model protection in mobile apps to uncover this less
understood problem of model privacy on mobile devices. Based on the 46,753 trending Android
apps collected from the US and Chinese app markets, alarmingly, this study shows that 41%
of ML apps do not protect their models at all. For those apps that use model protection or
encryption, we were able to extract the models from 66% of them via unsophisticated dynamic
analysis techniques. Our financial and security impact analysis on (stolen) models indicates
that the consequence can be severe for both the model vendors and the app owners. Third,
to protect on-device ML models, I propose ShadowNet, a secure and efficient model inference
system built to protect model privacy on mobile devices. ShadowNet offers a novel idea to
outsource the heavy part of the model inference to the untrusted world (including GPU) for
acceleration without leaking the model weights. The security of ShadowNet is rooted in the
TEE, which can protect the model privacy even when the OS is compromised.
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1 Introduction

1.1 Problem Statement
Mobile and IoT devices devices are omnipresent. Our shopping, social networking, entertainment, work, and
payment are made much more convenient with mobile phones. IoT devices are also being rapidly deployed in
home automation, industrial automation, smart cities, agriculture and so on, making our home more smart and
our industry more efficient. However, with great convenience also comes great concerns about the security and
privacy of our digital assets. First, the attacks on IoT devices are evolving and become more and more complex and
destructive. Second, with the newly emerging technologies like AI being deployed on mobile devices, new attack
surface are being opened up for the attackers, e.g., the privacy of machine learning models on our mobile phones.

Advanced attacks on IoT devices: Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) are being
rapidly deployed in smart homes, automated factories, intelligent cities, and more. As a result, embedded devices,
playing the central roles as sensors, actuators, or edge-computing nodes in IoT systems, are becoming attractive
targets for cyber attacks. Unlike computers, attacks on embedded devices can cause not only software failures or
data breaches but also physical damage. Moreover, a compromised device can trick or manipulate the IoT backend
(e.g., remote controllers or in-cloud services): hijacking operations and forging data.

The early attacks on IoT devices usually abuse the misconfiguration of IoT devices, like default passwords [73],
which can be mitigated through education on the users and security-aware default configuration. Nowadays, more
powerful attacks that exploit the implementation bug of wireless protocol have been demonstrated practical and
destructive [61]. Return-oriented programming (ROP) and data-only attacks are also proven to be easy to launch
on embedded devices, as demonstrated on vulnerable industrial robot controllers [59].

Unfortunately, today’s IoT backends cannot protect themselves from manipulations by compromised IoT devices.
This is due to the lack of a technique for remotely verifying if an operation performed by an IoT device has been
disrupted, or any critical data has been corrupted while being processed on the device. As a result, IoT backends
are forced to blindly trust remote devices for faithfully performing assigned operations and providing genuine data.
Our work aims to make this trust verifiable, and therefore, prevent compromised IoT devices from deceiving or
manipulating the IoT backend.

Model privacy on mobile devices: With the rapid development of machine learning technology, mobile app
developers have been quickly adopting on-device machine learning (ML) techniques to provide artificial intelligence
(AI) features, such as facial recognition, augmented/virtual reality, image processing, voice assistant, etc. This
trend is now boosted by new AI chips available in the latest smartphones [1], such as Apple’s Bionic neural engine,
Huawei’s neural processing unit, and Qualcomm’s AI-optimized SoCs.

Compared to performing ML tasks in the cloud, on-device ML (mostly model inference) offers unique benefits
desirable for mobile users as well as app developers. For example, it avoids sending (private) user data to the
cloud and does not require network connection. For app developers or ML solution providers, on-device ML greatly
reduces the computation load on their servers.

On-device ML inference inevitably stores ML models locally on user devices, which however creates a new
security challenge. Commercial ML models used in apps are often part of the core intellectual property (IP) of
vendors. Such models may fall victim to theft or abuse, if not sufficiently protected. In fact, on-device ML makes
model protection much more challenging than server-side ML because models are now stored on user devices, which
are fundamentally untrustworthy and may leak models to curious or malicious parties.

The consequences of model leakage are quite severe. First, with a leaked model goes away the R&D investment
of the model owner, which often includes human, data, and computing costs. Second, when a proprietary model
is obtained by unethical competitors, the model owner loses the competitive edge or pricing advantage for its
products. Third, a leaked model facilitates malicious actors to find adversarial inputs to bypass or confuse the ML
systems, which can lead to not only reputation damages to the vendor but also critical failures in their products
(e.g., fingerprint recognition bypass).

1.2 Thesis Statement
Driven by the great security and privacy concern about the omnipresent mobile and IoT devices, on which our
life has growing dependence, my research aims to : (1) secure the IoT devices in the face of evolving attacking
techniques; (2) advance the understanding of the newly emerging attack surface on mobile devices, namely the
privacy problem of on-device ML models, and (3) design novel systems to protect the model privacy on mobile
devices.
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For IoT devices, we need to improve our attack detection capabilities. In addition to detecting traditional
attacks that change the firmware, we should also develop new techniques to capture advanced attacks that can
manipulate the device behavior without modifying the firmware, e.g., control-flow hijacking and data-only attacks.

For mobile devices, we need to systematically study the new problem of ML model privacy, figure out how
widely the problem is and what impacts it can incur, and understand the challenges of protecting on-device ML
models.

Once we get a understanding of the new security threats on mobile devices, we should also attempt to design a
secure and efficient way to run model inference on mobile devices so as to protect the ML models’ privacy without
breaking existing ML applications.

1.3 Approaches Overview
In this thesis, I advance the state-of-the-art research on the security of IoT devices and mobile devices with novel
security system based on hardware-backed trusted computing primitives and systematic study of the ML model
privacy problem on mobile devices.

First, I present OAT [66], which is the first attestation method that captures both control-flow and data-only
attacks on embedded devices. The root of security is built on top of the TEE. Using this method, IoT backends
can now verify if a remote device is trustworthy when it claims it has performed an operation, sent in a service
request, or transported back data from the field. In addition, unlike traditional attestation methods, which only
output a binary result, our method allows verifiers to reconstruct attack execution traces for postmortem analysis.

Second, I present the first large-scale study of ML model protection and theft on mobile devices based on 46,753
trending Android apps collected from the US and the Chinese app markets [67]. Our study aims to shed light on
the less understood risks and costs of model leakage/theft in the context of on-device ML. We present our study
that answers the following questions with ample empirical evidence and observations: (1) How widely is model
protection used in apps? (2) How robust are existing model protection techniques? and (3) What impacts can
(stolen) models incur?.

Finally, I propose ShadowNet as part of my thesis, which is a secure and efficient model inference system
designed for mobile devices. The security of ShadowNet is also rooted in the TEE. However, ShadowNet avoids the
naive approach of moving the whole model inference into the TEE which can easily exhaust the limited resource
of the TEE and lose access to the untrusted hardware accelerators. Instead, ShadowNet offers a novel idea based
on linear transformation to outsource the heavy linear layers of the model to the untrusted world (including GPU)
for acceleration without leaking the model weights. With this novel design, ShadowNet has a potential to achieves
hardware-backed security with little overhead and small TCB size.

2 Background and Related Work

2.1 Attacks on IoT Devices and Backends
Embedded devices, essential for IoT, have been increasingly targeted by powerful attacks. For instance, hackers
have managed to subvert different kinds of smart home gadgets, including connected lights [61], locks [42], etc. In
industrial systems, robot controllers [59] and PLCs (Programmable Logic Controller) [30] were exploited to perform
unintended or harmful operations. The same goes for connected cars [52, 44], drones [39], and medical devices [31,
60]. In addition, large-scale IoT deployments were compromised to form botnets via password cracking [73], and
recently, vulnerability exploits [50].

Meanwhile, advanced attacks quickly emerged. Return-oriented Programming (ROP) was demonstrated to be
realistic on RISC [22], and particularly Arm [49], which is the common architecture for today’s embedded devices.
Data-only attacks [27, 43] are not just applicable but well-suited for embedded devices [74], due to the data-intensive
or data-driven nature of IoT.

Due to the poor security of today’s embedded devices, IoT backends (e.g., remote IoT controllers and in-cloud
services) are recommended to operate under the assumption that IoT devices in the field can be compromised and
should not be fully trusted [65]. However, in reality, IoT backends are often helpless when deciding whether or to
what extent it should trust an IoT device. They may resort to the existing remote attestation techniques, but these
techniques are only effective at detecting the basic attacks (e.g., device or code modification) while leaving advanced
attacks undetected (e.g., ROP, data-only attacks, etc.). As a result, IoT backends have no choice but to trust IoT
devices and assume they would faithfully execute commands and generate genuine data or requests. This blind
and unwarranted trust can subject IoT backends to deceptions and manipulations. For example, a compromised
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robotic arm can drop a command yet still report a success back to its controller; a compromised industrial syringe
can perform an unauthorized chemical injection, or change an authorized injection volume, without the controller’s
knowledge.

2.2 Arm TrustZone
TrustZone is a hardware feature available on both Cortex-A processors (for mobile and high-end IoT devices) and
Cortex-M processors (for low-cost embedded systems). TrustZone renders a so-called “Secure World”, an isolated
environment with tagged caches, banked registers, and private memory for securely executing a stack of trusted
software, including a tiny OS and trusted applications (TA). In parallel runs the so-called “Normal World”, which
contains the regular/untrusted software stack. Code in the Normal World, called client applications (CA), can
invoke TAs in the Secure World. A typical use of TrustZone involves a CA requesting a sensitive service from
a corresponding TA, such as signing or securely storing a piece of data. In addition to executing critical code,
TrustZone can also be used for mediating peripheral access from the Normal World.

2.3 Remote Attestation
Early works on remote attestation, such as [70][55], were focused on static code integrity, checking if code running
on remote devices has been modified. A series of works [16, 58, 29, 48] studied the Root of Trust for remote
attestation, relying on either software-based TCB or hardware-based TPM or PUF. Armknecht et al. [17] built a
security framework for software attestation.

Other works went beyond static property attestation. Haldar et al. [71] proposed the verification of some
high-level semantic properties for Java programs via an instrumented Java virtual machine. ReDAS [47] verified
the dynamic system properties. Compared with our work, these previous systems were not designed to verify
control-flow or dynamic data integrity. Further, their designs do not consider bare-metal embedded devices or
IoT devices. Some recent remote attestation systems addressed other challenges. A tool called DARPA [45] is
resilient to physical attacks. SEDA [19] proposed a swarm attestation scheme scalable to a large group of devices.
In contrast, we propose a new remote attestation scheme to solve a different and open problem: IoT backend’s
inability to verify if IoT devices faithfully perform operations without being manipulated by advanced attacks
(i.e., control-flow hijacks or data-only attacks). Our attestation centers around OEI, a new security property we
formulated for bare-metal embedded devices. OEI is operation-oriented and entails both control-flow and critical
data integrity.

A recent work called C-FLAT [14] is closely related to our work. It enabled control-flow attestation for embedded
devices. However, it suffers from unverifiable hashes, especially when attested programs have nested loops and
branches. This is because verifying a control-flow hash produced by C-FLAT requires the knowledge of all legitimate
control-flow hashes, which are impossible to completely pre-compute due to the unbounded number of code paths
in regular programs (i.e., the path explosion problem). In comparison, OAT uses a new hybrid scheme for attesting
control-flows, which allows deterministic and fast verification. Moreover, OAT verifies Critical Variable Integrity
and can detect data-only attacks, which C-FLAT and other previous works cannot.

2.4 On-device Machine Learning

The Trend of On-device Machine Learning: Currently, there are two ways for mobile apps to use ML: cloud-
based and on-device. In cloud-based ML, apps send requests to a cloud server, where the ML inference is performed,
and then retrieve the results. The drawbacks include requiring constant network connections, unsuitable for real-
time ML tasks (e.g., live object detection), and needing raw user data uploaded to the server. Recently, on-device
ML inference is quickly gaining popularity thanks to the availability of hardware accelerators on mobile devices
and the the ML frameworks optimized for mobile apps. On-device ML avoids the aforementioned drawbacks of
cloud-based ML. It works without network connections, performs well in real-time tasks, and seldom needs to send
(private) user data off the device. However, with ML inference tasks and ML models moved from cloud to user
devices, on-device ML raises a new security challenge to model owners and ML service providers: how to protect
the valuable and proprietary ML models now stored and used on user devices that cannot be trusted.

The Delivery and Protection of On-device Models : Typically, on-device ML models are trained by app
developers or ML service providers on servers with rich computing resources (e.g., GPU clusters and large storage
servers). Trained models are shipped with app installation packages. A model can also be downloaded separately
after app installation to reduce the app package size. Model inference is performed by apps on user devices, which
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relies on model files and ML frameworks (or SDKs). To protect on-device models, some developers encrypt/obfus-
cate them, or compile them into app code and ship them as stripped binaries[5, 10]. However, such techniques only
make it difficult to reverse a model, rather than strictly preventing a model from being stolen or reused.

2.5 Secure Machine Learning
Existing research on secure machine learning covers both the end devices and the cloud. Offline Model Guard
(OMG) [20] provides a secure model inference framework for mobile device based on SANCTUARY[21], a user
space enclave based on Arm TrustZone. OMG allows the model inference framework runs fully inside SANCTUARY
enclave to protect model privacy. MLCapsule [41] also deploy the model on the client side to protect the user input
from being sent to the untrusted cloud end. At the same time, it runs the model inference inside SGX to prevent
the model from being leaked to the client. GPU is not guarded by SANCTUARY and SGX, so both OMG and
MLCapsule do not support secure GPU acceleration. DarkneTZ[57] is a secure machine learning framework built
on top of Arm TrustZone. It allows a few selected layers to be running inside TEE to protect part of the model.
By running heavy linear layers inside TEE, it also poses resource challenges(like memory)on TEE. Comparing
with OMG, MLCapsule and DarknetTZ, ShadowNet has a small TCB inside TEE and allows secure outsource of
linear layers onto GPU. Graviton [72] proposes TEE extension for GPU hardware, thus allowing GPU tasks like
machine learning to be running securely on GPU. It is a promising feature but requires hardware changes on GPU.
Secloak [54] partitions GPU into secure world with Arm TrustZone to run GPU tasks securely at high performance
penalty.

Research on securing machine learning on the cloud end is an active area. TensorSCONE[51] propose a secure
machine learning framework running in the untrusted cloud. TensorSCONE integrates TensorFlow with the secure
Linux container technology SCONE[18] guarded by SGX. TF Trusted [12] leverages custom operations to send gRPC
messages into the Intel SGX device via Google Asylo[4] where the model is then run by Tensorflow Lite. Running
model inference inside TEE faces performance challenges due to limited memory and lack of GPU acceleration.
Occlumency [53] provides a suite of heuristic techniques based on Caffe and improves inference speed by 3.6 times.
Despite promising, these works do not support GPU acceleration.

YerbaBuena [40] partitions the model into frontnets(like the first layer) and backnets,and execute the frontnets
inside SGX to protect the user input from being leaked to the untrusted cloud while running backnets unprotected
to leverage hardware acceleration. Slalom [68] splits DNN into linear and nonlinear layers, and outsources linear
layers to GPU for acceleration with masked input. It verifies the linear layer’s results and computes the nonlinear
layers inside SGX. Slalom protects the user input privacy but not the model weights. SecureNets[28] transforms
both input and linear layer’s weights into matrix, and applies matrix transformation proposed in [62] to hide the
non-zero elements, then sends them to the untrusted cloud for acceleration. It is not clear whether SecureNets
supports depthwise convolution and convolution with stride. ShadowNet does not require transforming input and
weights into matrix, and is compatible with existing linear operations.

There are also secure ML with cryptographic approach. CryptoNets[34] applies Homomorphic Encryption(HE)
on neural networks and runs model inference on encrypted data to protect user input privacy. Jiang et. al [46]
presents a solution to encrypt a matrix homomorphically and perform arithmetic operations on encrypted matrices.
It protects both user data and model. TF Encrypted [11] enables training and prediction over encrypted data via
secure multi-party computation and homomorphic encryption. SafetyNets[32] designs a Interactive Protocol(IP)
that allows clients to verify the correctness of a class of DNNs running on the untrusted cloud by asking for a short
mathematical proof.

To ensure the integrity of model weights, Uchida et. al [69] and Zhang et. al [75] embed watermarks into
deep neural model parameters, while training the models. DeepAttest [26] encodes fingerprint in DNN weights to
prevent weight modification. These works are incapable of preventing weight leakage.

3 Attesting Operation Integrity of IoT Devices

3.1 Introduction of the Attacks on IoT Devices
IoT devices are being widely deployed in our home, industries and city infrastructures. These omnipresent devices
are becoming increasingly connected and mission-critical, allowing the operators to monitor and control these
physically scattered devices, e.g., home appliances, industry robots, or air quality sensors, from anywhere, at
anytime.
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Unfortunately, several characteristics of the IoT devices make them attractive targets for the attackers. First,
the universally identical software system. IoT devices are usually designed for certain purpose that can be widely
deployed and universally managed without the involvement of individual users. For one type of device, the software
systems of different devices are usually identical. As a result, the attack on one device can be easily repeated on
another. Second, wide connectivity. To allow universal management from the vendors and easy control from the
users, IoT devices are usually connected to a cloud hub, some of them also allows access and control from the end
user’s mobile device. Besides, some devices like home applicances, also allow easy access and configuration from
other devices under the same local area network, e.g., WiFi. Wide connectivity opens a large attack space for the
attackers and give them more power once they take control of an insider node of these connected devices. Third,
easy availability. IoT devices are usually cheap and can be bought online. The attackers can simply buy one and
reverse engineer the device for fun at low cost[33].

The attacks on IoT devices are also evolving. Earlier large scale attacks usually exploit insecure default settings
(e.g., passwords) on IoT devices[73]. Recently, researchers [61] have demonstrated that more advanced attacks
on IoT devices, e.g., exploiting the implementation bug of wireless protocol, can be destructive by spreading IoT
worms. An experimental security analysis of industrial robot controller [59] also shows that more advanced attacks
(e.g., control-flow hijacks and data-only attacks) are not only possible but also easier to launch on those industrial
robot controllers due to dated software and libraries.

Previous research on IoT devices focuses on the static property,e.g., code integrity [63, 70, 71, 64, 24, 47]. Code
integrity can be used to detect permanent attacks that modifies the firmware, but it can not detect advanced attacks,
e.g., control-flow hijacks and data-only attacks, which do not modify the firmware. A recent work C-FLAT [14]
took one step forward to introduce control-flow integrity (CFI) attestation. However, the proposed control-flow
verification is non-deterministic due to the path explosion issue, and it does not cover data-only attacks. There
lacks a general approach for the IoT backends (e.g., IoT hub in the cloud) to detect if any such advanced attacks
have happened while an operation is performed on the IoT end devices. As a result, the IoT backends have to
blindly trust that the IoT devices perform each operation faithfully without being manipulated.

3.2 Methodology
To address this problem, we first formulate a new security property for embedded devices, called “Operation
Execution Integrity” or OEI. We then design and build OAT, a system that enables remote OEI attestation for
Arm-based bare-metal embedded devices. OAT can detect both unexpected control-flow and data manipulations
in an efficient way, which existing attestation methods cannot check.

Our formulation of OEI is inspired by the observation that the tasks performed on embedded devices are usually
composed of several operations. Operation here means a logically independent task performed by an embedded
device. For example, taking a measurement of the temperature, moving the robotic arm from position A to position
B are two different operations. These operations are critical to the fulfillment of the tasks received from the IoT
hub. For simplicity of discussion, we assume an operation always has a single pair of entry and exit.

We use operation as the granularity of attestation to avoid the high overhead of always-on measurements. The
operations are triggered only when the device receives new commands from the IoT hub. In this way, OAT allows
the attestation to be triggered on need, minimizing the energy consumption or overhead on the end devices when
no operation is triggered.

OEI captures the control-flow and critical data integrity within an operation. Satisfying OEI entails an operation
is executed without any manipulation of control-flow and critical data. For control-flow verification, we design an
efficient measurement scheme which is light-weight and deterministic. It is based on the observation that there are
two types of control-flow events: forward and backward. Forward control-flow events refer to branches and function
calls, while backward control-flow events refer to function returns. For a normal execution without control-flow
hijacks, once the forward control-flow is determined, there is only one legal backward control-flow. OAT uses two
different measurements for forward and backward control-flow events. For forward events, we record the taken/not-
taken information for conditional jumps, which takes only one bit space to store. We also record the destination
addresses of indirect jumps/function calls. We do not record any information for unconditional branches or direct
function calls. For backward events, we do not record any destination addresses of function returns. Instead, we
calculate a hash over all function return events, which comprise of the start addresses and destination addresses.
During verification, our verification engine use abstract execution on the binary with the recorded forward events
information to reconstruct the control flow and calculate the hash. We then compare the inferred hash with the
hash measured on the device. A hash mismatch means control-flow hijacks happened during measurement. The
use of hash for backward control-flow events greatly reduced the size of the control-flow measurements.
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Table 1: Runtime overhead measured on 5 real embedded programs

Prog. Operation Exec. Time OAT Instrumentation Statistics Blob Verification
w/o OEI (s) w/ OEI (s) Overhead (%) B.Cond Def-Use Ret Icall/Ijmp Critical Var. Size (B) Time (s)

SP 10.19 10.38 1.9% 488 2 1946 1 20 69 5.6
HA 5.28 5.36 1.6% 147 91 33 2 6 44 0.61
RM 10.01 10.13 1.3% 901 100 100 100 7 913 1.74
RC 2.55 2.66 4.5% 14 33 1 1 8 10 0.13
LC 5.33 5.56 4.4% 931 2420 10 10 4 205 1.35
Avg. N/A N/A 2.7% 496 529 418 23 9 248 1.89

Table 2: Number of Instrumentation Sites: Value-based (R1) and Address-based (R2)

SP HA RM RC LC Avg.
R1 56 37 57 20 41 -
R2 140 388 842 45 131 -
R1 / R2 40% 9.5% 6.8% 44.4% 31.2% 26%

Our critical data integrity is also customized for embedded device to reduce the overhead. By separating critical
data from non-critical data, and only enforcing integrity check for critical data, we can reduce the code size and
runtime overhead. Critical data refers to those critical variables that affects the execution of an operation. We
define two types of critical variables: semantically critical variables and conditional variables. Semantically critical
variables need to be annotated by the programmer. For example, for operations involve sensors, the variables that
store the value read from sensors are semantically critical. For operations involve the robotic arm movement, the
variables that store the actual distance or angle of the arm movement are semantically critical. Conditional variables
refers to variables used in the condition expression of a control-flow transfer sentence, e.g., variables used in if
or while condition expressions. Conditional variables can be automatically annotated by compiler. Manipulating
these variables will bend the control-flow to favor the attackers.

Our critical variable integrity check is different from previous works on data integrity check [25, 15, 23] as they
require heavy instrumentation. Previous works like DFI [25] and DataShield [23] performs address-based check.
They need to instrument every write instruction to enforce destination address check, no matter it is protecting
all program data or selected part of program data. Our goal is to enforce the integrity check of critical variables.
We design a value-based integrity check, which only needs to instrument those instructions that need to access
those critical variables. Our critical variable integrity requires the read value of each critical variable matches the
write value from the last legal write instruction. We put more effort on compiler side to statically identify all legal
read/write access instructions to critical variables, and instrument these relevant instructions. When the ratio of
critical variables and all variables is low, our approach incurs much less instrumentation overhead comparing with
address-based checks.

3.3 Evaluation Results
We evaluate the end-to-end overhead of OAT on five open-source embedded programs. These five programs repre-
sent a reasonable level of variety. The 5 selected embedded programs are:

• Syringe Pump (SP) is a remotely controlled liquid-injection device, often used in healthcare and food process-
ing settings. We apply OEI attestation to the “injection-upon-command” operation.

• House Alarm System (HA) [35] is an IoT device that, when user-specified conditions are met, takes a picture
and triggers an alarm. We apply OEI attestation to its “check-then-alarm” operation.

• Remote Movement Controller (RM) [37] is an embedded device that allows the physical movement of its host
to be controlled remotely. We attest the “receive-execute-command” operation.

• Rover Controller (RC) [38] controls the motor on a rover. We attest the “receive-execute-command” operation.

• Light Controller (LC) [36] is a smart lighting controller. We attest the “turn-on/off-upon-command” operation.

Compile-time Overhead: Embedded programs are usually sensitive to program size. We measured the code
size and compilation time increase for the five test programs. Figure 1 shows the results for each program. The
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Figure 1: Compile-time overhead

Table 3: Control-flow Trace Size (Bytes): With Return Hash (R1) and Without Return Hash (R2)

SP HA RM RC LC Avg.
R1 69 44 913 10 205 -
R2 42941 3772 13713 585 13725 -
R1 / R2 0.2% 1.1% 6.7% 1.7% 1.5% 2.24%

absolute code size increase is less than 3 KB, which is acceptable for embedded devices. The compilation delay
caused by extra code analysis and instrumentation is less than 1 second for the tested programs. Considering that
the embedded programs are usually small by size, the compilation delay will not significantly affect the developer’s
compilation experience.

Operation Execution Time & Instrumentation Statistics: For each test program, we also measure the run-
time overhead caused by attestation. We measure the operation execution time with and without OEI attestation.
The results are shown in the column of “Operation Exec. Time” in Table 1. The sub-column “Overhead” shows the
relative delay caused by OAT to operation executions, averaging 2.7%. As we can see, the execution delay caused
by our attestation may vary due to the length/duration of the attested operation and the frequency of critical
variable def-use events. We also show the statistics of control-flow and critical variables in Table 1.

Value-based Check vs. Addressed-based Check: To compare the difference between value-based check and
address-based check, we measured the number of instrumented instructions needed in both cases for all of the test
programs. As shown in Table 2, on average, CVI’s instrumentation is 74% less than the instrumentation required
by address-based checking (i.e., a 74% reduction).

Space-efficiency of Hybrid Attestation: Our control-flow attestation uses the hybrid scheme consisting both
forward traces and backward hashes. We compared the sizes of the control-flow traces produced by OAT (R1 in
Table 3) and the traces produced by pure trace-based CFI (R2 in Table 3). On average, OAT’s traces take only
2.24% of space as needed by control-flow traces (i.e., a 97% reduction). It shows that our hybrid scheme is much
better suited for embedded devices in terms of space-efficiency.

4 A Large-scale Study on Insufficient Machine Learning Model Protec-
tion in Mobile Apps

Machine Learning (ML) technology is being rapidly developed and deployed to bring intelligence to our life. Specif-
ically, the breakthrough of Deep Learning (DL) in image processing and NLP has unlocked many popular product
features like face recognition and chatting robots. In the beginning, popular ML services provided to the end
users rely on heavy work loads running in the cloud due to its high demand for computing resources. Nowadays,
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Figure 2: Overview of Static-Dynamic App Analysis Pipeline

with new AI chips being available in the latest smartphones [1], such as Apple’s Bionic neural engine, Huawei’s
neural processing unit, and Qualcomm’s AI-optimized SoCs, on-device machine learning (ML) is quickly gaining
popularity among mobile apps. It greatly saved the latency of sending data between end devices and the cloud, and
allows offline model inference while preserving user privacy. However, ML models, considered as core intellectual
properties of model owners, are now stored on billions of untrusted devices and subject to potential thefts. Leaked
models can cause both severe financial loss and security consequences.

To understand the this new security threats, we presents the first empirical study of ML model protection on
mobile devices. Our study aims to answer three open questions with quantitative evidence: How widely is model
protection used in apps? How robust are existing model protection techniques? What impacts can (stolen) models
incur? To that end, we built a simple app analysis pipeline and analyzed 46,753 popular apps collected from the
US and Chinese app markets. We discuss our analysis and findings in detail in the following sections.

4.1 Analysis Overview
We built a static-dynamic app analysis pipeline. The workflow of our analysis is depicted in Figure2. Apps
first go through the static analyzer, ModelXRay, which detects the use of on-device ML and examines the model
protection, if any, adopted by the app. For apps with encrypted models, the pipeline automatically generates the
analysis scripts and send them to the dynamic analyzer, ModelXtractor, which performs a non-sophisticated form
of in-memory extraction of model representations. ModelXtractor represents a realistic attacker who attempts to
steal the decrypted ML models from an app installed on her own phone.

We report our findings and insights produced by ModelXRay and ModelXtractor in §4.2.2 and §4.3.2, respec-
tively. We discuss the financial and security impact of (stolen) models on different stakeholders in §4.4.

4.2 Q1: How Widely Is Model Protection Used in Apps?
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Figure 3: Identify Encrypted Models with ModelXRay

ModelXRay extracts an app’s asset files and libraries from the APK file, analyzes the native libraries and asset files to
identify ML frameworks, SDK libraries and model files. Then it applies model filters combining file sizes, file suffixes and

ML libraries to reduce false positives and use entropy analysis to identify encrypted models.
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4.2.1 Methodology

We collect apps from three Android app markets: Google Play, Tencent My App, and 360 Mobile Assistant. They
are the leading Android app stores in the US and China [13]. We download the apps labeled TRENDING and
NEW across all 55 categories from Google Play (12,711), and all recently updated apps from Tencent My App
(2,192) and 360 Mobile Assistant (31,850).

The workflow of ModelXRay is shown in Figure 3. For a given app, ModelXRay disassembles the APK file
and extracts the app asset files and the native libraries. Next, it identifies the ML libraries/frameworks and the
model files by analyzing the library’s exported symbols and model file’s suffix and path names. We only consider
encrypted models as protected in this study. ModelXRay use entropy as an indicator of encryption. High file
entropy means the file either stores encrypted data or compressed data. ModelXRay filter out compressed data by
checking file magic number.

ModelXRay generates a profile for each app. A profile comprises of the information about the ML models and
SDK libraries. For ML models, it records file names, sizes, MD5 hash and entropy. For SDK libraries, we record
framework names, the exported symbols, and the strings extracted from the binaries. They contain information
about the ML functionalities, such as OCR, face detection, liveness detection. Our analysis pipeline uses such
information to generate the statistics on the use of ML libraries.

4.2.2 Findings and Insights

Before we present our answers to the question “Q1: How widely is model protection used in apps?”. We first
show the popularity and diversity of on-device ML among our collected apps, which echo the importance of model
security and protection.

Popularity and Diversity of ML Apps: In total, we are able to collect 46,753 Android apps from Google Play,
Tencent My App and 360 Mobile Assistant stores. Using ModelXRay, we identify 1,468 apps that use on-device
ML and have ML models deployed on devices, which accounts for 3.14% of our entire app collection.

On-device ML is gaining popularity in all categories. There are more than 50 ML apps in each of the categories,
which suggests the wide interests among app developers in using on-device ML.

Table 4: The number of apps collected across markets.

Google
Play

Tencent
My App

360
Mobile

Assistant
Total

Category All ML All ML All ML All ML
Business 404 2 99 2 2,450 296 2,953 300

News 96 0 102 5 2,450 180 2,648 185
Images 349 36 158 23 4,900 156 5,407 215

Map 263 4 206 14 2,450 83 2,919 101
Social 438 23 141 17 2,450 79 3,029 119

Shopping 183 5 112 16 2,450 84 2,745 105
Life 1,715 15 193 16 2,450 53 4,358 84

Education 389 3 116 7 2,450 74 2,955 84
Finance 123 6 76 21 2,450 55 2,649 82
Health 317 5 115 3 2,450 42 2,882 50
Other 8,434 79 874 35 4,900 29 14,208 143
Total 12,711 178 2,192 159 31,850 1,131 46,753 1,468

Note: In 360 Mobile Assistant, the number of unique apps is 31,591 (smaller than 32,850) because some apps are multi-categorized.
Image category contains 4,900 apps because we merged image and photo related apps.

We measure the diversity of ML apps in terms of ML frameworks and functionalities. We show the top-10 most
common functionalities and their distribution across different ML frameworks in Table 5.

On-device ML offers highly diverse functionalities. Common ML functionalities offered in the on-device fashion
includes OCR, face tracking, hand detection, speech recognition, handwriting recognition, ID card recognition, and
bank card recognition, liveness detection, face recognition, iris recognition and so on.

Model Protection Across App Stores: Figure 4 gives the per-app-market statistics on ML model protection
and reuse. Figure 4a shows the per-market numbers of protected apps (i.e., apps using protected/encrypted models)
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Table 5: Number of apps using different ML Frameworks with different functionalities.

Functionality TensorFlow
(Google)

*Caffe2/PyTorch
(Facebook)

*Parrots
(SenseTime)

TFLite
(Google)

NCNN
(Tencent)

Mace
(Xiaomi)

MxNet
(Apache)

ULS (Utility
Asset Store) Total

OCR(Optical Character Recognition) 41 186 140 6 37 18 1 11 441
Face Tracking 26 272 216 7 53 6 13 27 620

Speech Recognition 7 32 9 1 11 18 1 9 88
Hand Detection 4 0 0 2 4 0 0 0 10

Handwriting Recognition 8 17 1 0 16 0 0 0 42
Liveness Detection 32 392 349 9 70 7 10 3 872

Face Recognition 17 116 95 6 40 7 10 3 294
Iris Recognition 0 4 0 0 2 0 3 0 9

ID Card Recognition 26 230 147 5 47 18 0 10 483
Bank Card Recognition 11 126 117 2 16 18 0 9 299

Note: 1) One app may use multiple frameworks for different ML functionalities. Therefore, the sum of apps using different functionalities is
bigger than the number of total apps. 2) Security critical functionalities are in bold fonts and can be used for fraud detection or access
control. 3) *Caffe was initially developed by Berkeley, based on which Facebook built Caffe2, which was later merged with PyTorch. The

following uses “Caffe” to represent Caffe, Caffe2 and PyTorch.

and unprotected apps (i.e., apps using unprotected models).
Overall, only 59% of ML apps protect their models. The rest of the apps (602 in total) simply include the

models in plaintext, which can be easily extracted from the app packages or installation directories. For 41% of
the ML apps, stealing their models is as easy as downloading and decompressing their app packages.

If we focus on individual models (i.e., some apps use multiple ML models for different functionalities), the
percentages of unprotected models (Figure 4b) become even higher. Overall, 4,254 out of 6,522 models (77%) are
unprotected and thus easily extractable and reverse engineered.

(a) Apps using protected/encrypted
models vs. those using unprotected
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Figure 4: Statistics on ML model protection and reuse, grouped by app markets. The “total” number of unique
models is less than the sum of the per-store numbers because some models are not unique from different stores.
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Figure 5: Statistics on ML model protection and reuse, grouped by ML frameworks. The “total” number is less than
the sum of the per-framework numbers because many apps use multiple frameworks for different functionalities.

Model Protection Across ML Frameworks: Some ML frameworks have wider adoption of model protection.
Figure 5ashows that , more than 79% of the apps using SenseTime (Parrots) have protected models, followed by
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apps using Caffe (60% of them have protected models). For apps using TensorFlow and NCNN, the number is
around 20%. Apps using other frameworks are the least protected against model thefts.

GPU Acceleration Adoption Rate among ML Apps: Table 6 shows the number ML apps and libraries that
use GPU for acceleration. 797(54%) ML apps make use of GPU. The wide adoption of GPU acceleration poses
a challenge to the design of secure on-device ML. For instance, the naive idea of performing model inference and
other model access operations entirely inside a trusted execution environment (TEE, e.g., TrustZone) is not viable
due to the need for GPU acceleration, which cannot be easily or efficiently accessed within the TEE.

Table 6: ML apps and libraries that use GPU acceleration

360 Mobile
Assistant

Tencent
My App

Google
Play

ML Apps 669 104 24
ML Libraries 212 103 23

4.3 Q2: How Robust Are Existing Model Protection Techniques?
We build ModelXtractor, a tool simple by design to dynamically recover protected or encrypted models used in
on-device ML. ModelXtractor mainly targets on-device ML models that are encrypted during transportation and
at rest (in storage) but not protected when in use or loaded in memory. For protected models mentioned in §4.2,
ModelXtractor is performed to assess the robustness of the protection.
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Figure 6: Extraction of (decrypted) models from app memory using ModelXtractor

The left side shows the typical workflow of model loading and decryption in mobile apps. The right side shows the
workflow of ModelXtractor. The same color on both sides indicate the same timing of the strategy being used. The "Check
SDK License" shows that a model provider will check an app’s SDK license before releasing the decryption keys as a way

to protect its IP.

The workflow of ModelXtractor is depicted in Figure 6. It takes inputs from ModelXRay, including the infor-
mation about the ML framework(s) and the model(s) used in the app (described in §4.2). These information helps
to target and efficiently instrument an app during runtime, and capture models in plaintext from the memory of
the app.

4.3.1 Methodology

ModelXtractor uses app instrumentation to dynamically find the memory buffers where (decrypted) ML is loaded
and accessed by the ML frameworks. For each app, ModelXtractor determines which libraries and functions need
to be instrumented and when to start and stop each instrumentation, based on the instrumentation strategies
(discussed shortly). ModelXtractor automatically generates the code that needs to be inserted at different instru-
mentation points. It employs the widely used Android instrumentation tool, Frida [6], to perform code injection.

ModelXtractor has a main instrumentation strategy (S0) and four alternative ones (S1-S4). When the default
strategy cannot capture the models, the alternatively strategies (S1-S4) will be used.

S0: Capture at Model Deallocation: This is the default strategy since we observe the most convenient time
and place to capture an in-memory model is right before the deallocation of the buffer where the model is loaded.
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This is because (1) memory deallocation APIs (e.g.,free) are limited in numbers and easy to instrument, and (2)
models are completely loaded and decrypted when their buffers are to be freed.

This default instrumentation strategy may fail in the following uncommon scenarios. First, an app is not
using native ML libraries, but a JavaScript ML library. Second, an app uses its own or customized memory
allocator/deallocator. Third, a model buffer is not freed during our dynamic analysis.

S1: Capture from Heap: This strategy dumps the entire heap region of an app when a ML functionality is
in use, in order to identify possible models in it. It is suitable for apps that do not free model buffers timely or
at all. It also helps in cases where memory-managed ML libraries are used (e.g., JavaScript) and buffer memory
deallocations (done by a garbage collector) are implicit or delayed.

S2: Capture at Model Loading: This strategy instruments ML framework APIs that load models to buffers.
We manually collect a list of such APIs (e.g., loadModel) for the ML frameworks observed in our analysis. This
strategy is suitable for those apps where S0 fails and the ML framework code is not obfuscated.

S3: Capture at Model Decryption: This strategy instruments model decryption APIs (e.g., aes256_decrypt)
in ML frameworks, which we collected manually. Similar to S2, it is not applicable to apps that use obfuscated ML
framework code.

S4: Capture at Customized Deallocation: Some apps use customized memory deallocators. We manually
identify a few such allocators (e.g., slab_free), which are instrumented similarly as S0.

4.3.2 Findings and Insights

Results of Dynamic Model Extraction: Table 7 shows the statistics on the 82 analyzed apps, grouped by the
ML frameworks they use. Among the 29 apps whose ML functionalities were triggered, we successfully extracted
models from 18 of them (66%). Considering the reuse of those extracted encrypted models, the number of apps that
are affected by our model extraction is 347 (i.e., 347 apps used the same models and same protection techniques
as the 18 apps that we extracted models from). This extraction rate is alarming and shows that a majority of the
apps using model protection can still lose their valuable models to an unsophisticated attack. It indicates that
even for app developers and ML providers willing/trying to protect their models, it is hard to do it in a robust way
using the file encryption-based techniques.

Table 8 shows the per-app details about the extracted models. We anonymized the apps for security concerns:
many of them are highly downloaded apps or provide security-critical services. Many of the listed apps contain
more than one ML models. For simplicity, we only list one representative model for each app.

The extracted models are highly popular and diverse, some very valuable or security-critical. From Table 8 we
can see that 8 of 15 listed apps have been downloaded more than 10 million times. Half of the extracted models
belong to commercial ML providers, such as SenseTime, and were purchased by the app developers. Such models
being leaked may cause direct financial loss to both app developers and model owners (§4.4).

As for diversity, the model size ranges from 160KB to 20MB. They span all the popular frameworks, such
as TensorFlow, TFLite, Caffe, SenseTime, Baidu, and Face++. The observed model formats include Protobuf,
FlatBuffer, JSON, and some proprietary formats used by SenseTime, Face++ and Baidu. In terms of ML func-
tionalities, the models are used for face recognition, face tracking, liveness detection, OCR, ID/card recognition,
photo processing, and malware detection. Among them, liveness detection, malware detection, and face recognition
are often used for security-critical purposes, such as access control and fraud detection. Leakage of these models
may give attackers an advantage to develop model evasion techniques in a white-box fashion.

Table 7: Model extraction statistics.

ML
Framework

Unique Models
Analyzed

ML
Triggered

Models
Extracted

Models
Missed

Apps
Affected

TensorFlow 3 3 3 0 3
Caffe 7 3 1 2 79

SenseTime 55 16 11 5 186
TFLite 3 2 2 0 76
NCNN 9 3 0 3 0
Other 5 3 2 1 88
Total 82 29 18 11 347

Note: 347 is the sum of affected apps per framework after deduplication.
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Table 8: Overview of Successfully Dumped Models with ModelXtractor

App name Downloads Framework Model Functionality Size (B) Format Reuses Extraction Strategy
Anonymous App 1 300M TFLite Liveness Detection 160K FlatBuffer 18 Freed Buffer
Anonymous App 2 10M Caffe Face Tracking 1.5M Protobuf 4 Model Loading
Anonymous App 3 27M SenseTime Face Tracking 2.3M Protobuf 77 Freed Buffer
Anonymous App 4 100K SenseTime Face Filter 3.6M Protobuf 3 Freed Buffer
Anonymous App 5 100M SenseTime Face Filter 1.4M Protobuf 2 Freed Buffer
Anonymous App 6 10K TensorFlow OCR 892K Protobuf 2 Memory Dumping
Anonymous App 7 10M TensorFlow Photo Process 6.5M Protobuf 1 Freed Buffer
Anonymous App 8 10K SenseTime Face Track 1.2M Protobuf 5 Freed Buffer
Anonymous App 9 5.8M Caffe Face Detect 60K Protobuf 77 Freed Buffer
Anonymous App 10 10M Face++ Liveness 468K Unknown 17 Freed Buffer
Anonymous App 11 100M SenseTime Face Detect 1.7M Protobuf 18 Freed Buffer
Anonymous App 12 492K Baidu Face Tracking 2.7M Unknown 26 Freed Buffer
Anonymous App 13 250K SenseTime ID card 1.3M Unknown 13 Freed Buffer
Anonymous App 14 100M TFLite Camera Filter 228K Json 1 Freed Buffer
Anonymous App 15 5K TensorFlow Malware Classification 20M Protobuf 1 Decryption Buffer

Note: 1) We excluded some apps that dumped the same models as reported above; 2) We anonymized the name of the apps to protect
the user’s security; 3) Every app has several models for different functionalities, we only list one representative model for each app.

4.4 Q3: What Impacts can (Stolen) Models Incur?
ML models are the core intellectual properties of ML solution providers. The impacts of leaked models are wide
and profound, including substantial financial impact as well as significant security implications.

4.4.1 Financial Impact

Financial impact mainly applies to two stakeholders: attackers, and vendors (model providers and app companies).

Attackers financially benefit from leaked models. App developers usually have two legitimate ways to get
ML models: (1) buying a ML SDK and model license from a ML solution provider, such as SenseTime, Face++,
and so on; (2) designing and training their own ML models using open-source or customized frameworks, which
usually requires a large amount of computing and human resources. Stealing the models saves the attackers either
the license fee paid to the model providers, or the research and development (R&D) cost on the models.

According to Face++, the annual fee for a license with offline authorization is $50,000 to $200,000 [8]. The
saving is large enough to motivate an attacker to steal the models. In our analysis, we found 60 cases of different app
companies are reusing model licenses. One of the licenses is even used by potentially 12 different app companies,
indicating a high chance of illegal uses.

Vendors face financial loss from decreasing competitive edge with stolen models. For vendors whose
main business (source of income) depends on ML models, e.g., model providers or app companies, model leakages
result into pricing disadvantages, lost of customers and market share.

For model providers, the market is strongly competitive. In our study, we have found some top ML SDK
providers, such as SenseTime, Megvii, Baidu, ULSee, Anyline, etc. Take Megvii as an example, according to Owler
[9], 10 competitors are closely related to its businesses, such as Cognitec, SenseTime, Kairos, FaceFirst, Cortexica,
etc. For app companies, the competition is as much competitive if not more so. In Google Play only, our study
found 36 apps using ML SDK for image recognition as the main business. Considering the other two stores, at
least 215 apps are competing for this business.

4.4.2 Security Impact

Some ML models are used for security-critical purposes. For example, liveness detection model is used to verify
whether it is a real person holding a real ID card. Face, fingerprint and iris recognition models are used to detect
and verify the identity of a person. These models bring in great convenience, for example, users do not need to go
to a bank or customer service centers to verify their identities. However, breaches of such models bring in security
and privacy concerns.

For attackers, a leaked security-critical model makes it easier for them to design and craft adversarial examples.
They can then use the examples to either fake different identities, or simply bypass the identity check of the apps
[3].

We found more than 100 apps using on-device ML models for banking and loan services. These apps provide
personal loan services aiming at quick and convenient loan applications. They use face recognition models to verify
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the identity of a person by taking a short video, and comparing with the photo on the ID card. The apps then
determine the credit limits and rates to loan to the applicants. When the models are leaked, attackers can easily
fake identities of other applicants, and apply for loans on their behalf.

5 Research Plan
In previous sections, I presented the completed work on defending advanced attacks on IoT devices and under-
standing the newly emerging model privacy problem on mobile devices. However, how to protect the model privacy
on mobile devices is still an open research problem.

Our previous work [67] on model privacy shows that even though the ML models can be encrypted by the app,
it still suffers from unsophisticated runtime attacks. 54% ML apps use GPU acceleration, which means supporting
GPU acceleration is very important for existing ML apps. Besides, many ML apps use on-device ML for live video
stream analysis including face recognition, liveness detection and so on. With all above consideration, we want to
design a secure on-device model inference system that meets the following goals:

• Security rooted in the hardware, so that the models will be secure even when the OS is compromised;

• Reasonable performance overhead, making sure it will not break existing real-time tasks;

• Access to hardware accelerators, which are being developed and used for on-device ML tasks;

TEE provides hardware-level security. Our previous work OAT [66] demonstrated that TEE can be used to
build efficient attestation system with hardware-backed trusted computing primitives. However, using mobile TEE
for secure model inference has several technical challenges.

First, the mobile TEE, like Arm TrustZone, is designed for small security critical services like managing en-
cryption keys. The memory reserved for the TEE OS is limited. For example, only 14 MB is available for Trusted
Applications of OP-TEE OS on Hikey960 Dev Board, while the model size of AlexNet is 242MB. It is simply not
feasible to run the high resource-demanding model inference inside the TEE.

Second, the current TEE does not include GPU/NPU into the secure domain, so we will also lose access to the
hardware acceleration. Third, the model inference framework will also greatly increase the TCB of TEE, risking
the security of the whole system.

To address the above challenges, I propose the following work as part of my doctoral thesis.

5.1 ShadowNet: a Secure and Efficient Model Inference Scheme
We propose ShadowNet: a secure and efficient model inference scheme built on top of mobile TEE. The key
observation of ShadowNet is shared with the previous research like Slalom [68] that the linear layers of CNNs
occupy the majority of the model parameters and the model inference time. For example, the linear layers of
MobileNets occupy around 95% of the model parameters, 99% of the model inference time. The idea of ShadowNet
is to apply linear transformation on the weights of the linear layers and outsource them onto the untrusted world,
so that we can leverage the hardware acceleration without trusting it. ShadowNet restores the results inside the
TEE. The other nonlinear layers are also kept secure inside the TEE.

With this design, ShadowNet’s security is rooted in the TEE, meeting the first design goal; ShadowNet does
not introduce any heavy cryptographic operations, the performance overhead should not be heavy, meeting the
second design goal; ShadowNet is still able to use the hardware acceleration meeting the third design goal. At the
same time, ShadowNet solves the technical challenges of mobile TEE by keeping the TCB size small and the TEE
memory usage low.

5.2 Formal Security Analysis of the Scheme
In order to apply ShadowNet scheme, we need to formally prove the scheme is secure. In detail, we need to
show that ShadowNet meet two security properties: (1) by observing the weights of the transformed linear layers
that is outsourced to the untrusted world, the attacker won’t be able to infer the original secret weights before
transformation. (2) based on the exposed transformed weights, training an equivalent model should not be made
significantly easier than training the original model from scratch.

These two security property guarantee that after applying the ShadowNet transformation, the transformed
model will not leak the original weights or make it easier for the attacker to train an equivalent model by outsourcing
the transformed linear layers onto the untrusted hardware accelerators.
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5.3 System Design Challenges
ShadowNet split the model inference between the Rich Execution Environment (REE) and the Trusted Execution
Environment (TEE). The transformed linear layers can run on the untrusted hardware accelerators including GPU
while the restoration of the transformed results and the model inference of non-linear layers run inside the TEE.

In order to achieve good performance, we need to overcome several system design and engineering challenges.
First, the communication overhead between REE and TEE should be optimized as it happens frequently. The
parameter passing between REE and TEE should be designed in a secure and efficient way. Second, writing code
for TEE also faces the challenges of limited resources, like limited secure memory. The model inference code should
be written in a memory efficient way. Third, mobile TEE does not have rich computation library support. For
example, several popular computation libraries including Eigen Library [7] and Arm Compute Library [2] only have
C++ version and do not support mobile TEE OS like the OP-TEE OS [56].

5.4 Milestones
The plan for completing my research is presented in Table 9.

Table 9: Plan for completion

Task Completion Date

Finish implementation & evaluation of ShadowNet January 2021
Formalize the security analysis of ShadowNet February 2021
Finalizing ShadowNet for publication March 2021
Dissertation defense April 2021
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